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A Hermitian space is called orthomodular if the Projection Theorem holds: 
every orthogonally closed subspace is an orthogonal summand. Besides the 
familiar real or complex Hilbert spaces there are non-classical infinite dimen- 
sional examples constructed over certain non-Archimedeanly valued, complete 
fields. We study bounded linear operators on such spaces. In particular we 
construct an operator algebra d of von Neumann type that contains no 
orthogonaI projections at all. For operators in ~/we establish a representation 
theorem from which we deduce that d is commutative. We then focus on a 
subalgebra ~ which turns out to be an integral domain with unique maximal 
ideal. Both analytic and topological characterizations of ~r are given. 

1. I N T R O D U C T I O N  

The  s tudy  o f  o r t h o m o d u l a r  spaces has  g rown ou t  o f  the classical  
t heo ry  o f  Hi lbe r t  spaces,  The  s ta r t ing  po in t  is the fundamen ta l  p r o p e r t y  
expressed by  the fo l lowing result .  

Projection Theorem. Let  H be a real  o r  complex  Hi lbe r t  space a n d  
A~ the la t t ice  o f  all  l inear  subspaces  o f  H.  Then  

(P)  for  all  U~oW(H):  U = O  => H = U ~ U  • 

where  0 is the  topo log ica l  c losure  o f  U. 

N o w  in a H i lbe r t  space a l inear  subspace  U is topo log ica l ly  c losed i f  
and  on ly  i f  it is o r thogonaUy closed,  so we m a y  restate  (P)  as 

(P ' )  for  all U ~ A a ( H ) :  U = U •177 ~ H = U ( ~  U • 
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This is a purely algebraic formulation of the Projection Theorem which 
makes sense for arbitrary vector spaces endowed with a scalar product. We 
are led to the following generalization. 

Let there be given a vector space V over a field K (of any character- 
istic), an involution ~ ~ 4" on K, and an anisotropic *-Hermitian form 
�9 : V x V ~ K. The scalar product tI) implements a symmetric orthogonality 
relation • on V, 

x •  ~ ~ ( x , y ) = 0  

To every S ___ V we can form the orthogonal space S • := {x e V[x _1_ s for all 
s ~S}  and the biorthogonal S•177177 • 

Definition. (V, r is called an orthomodular space if 

(P') for all U e ~ ( V ) :  U =  U "-L =~ V =  U @ U  • 

It is readily verified that an anisotropic Hermitian space (V, ~) satisfies 
(P') if and only if the associated lattice ~a.•  (V)..= {U~L~(V)IU = U •177 of 
all orthogonally closed linear subspaces satisfies the orthomodular law. 

The most central question is: what orthomodular spaces are there? 
This question is still far from being solved. 

Let us first mention that if dim V < ~ ,  then the property (P') is simply 
equivalent to anisotropy of the form and therefore uninteresting. In infinite 
dimension, however, the Projection Theorem (P') is a very strong require- 
ment. We have as classical examples the real or complex Hilbert spaces. 
For a long time these were the only ones and the endeavors of some people 
(Gross and Keller, 1977; Morash, 1976; Wilbur, 1977) were directed 
toward proving that there are no other examples, i.e., that in infinite 
dimension the algebraic condition (P') is strong enough to characterize 
Hilbert spaces. 

Then, in 1979/80, a new kind of infinite dimensional orthomodular 
space was discovered (Gross and K/inzi, 1985; Keller, 1980). They are all 
constructed over certain non-Archimedean, complete fields and are en- 
dowed with a natural non-Archimedean norm induced by the form. These 
new examples are now termed "nonclassical" or "exotic" orthomodular 
spaces. Over the last decade various of their basic properties have been 
intensively investigated, e.g., the orthogonal group and Clifford algebras 
(F/issler-Ullmann, 1983), automorphisms of the underlying orthomodular 
lattice (Gross, 1987) or measures (Keller, 1990). In the present paper we 
deal with bounded linear operators. Our purpose is to provide a review of 
results which illustrate some of the most salient new features that appear in 
the nonclassical framework. 
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We shall first outline the construction of an "exotic" orthomodular 
space V (in Section 2) and then look at operator algebras of yon Neumann 
type. The most straightforward way to define such algebras is by selecting 
a bounded, self-adjoint operator A and taking {A}', the algebra of all 
operators that commute with A. Accordingly, in Section 4 we will construct 
a particular computationally suitable operator A on V and examine its 
basic properties. The algebra d = {A }', which will be studied in Section 5, 
turns out to be a v o n  Neumann algebra that contains no nontrivial 
projection; moreover, d is commutative and without divisors of zero. In 
Section 6 we focus attention on a subalgebra W which exhibits remarkable 
algebraic properties; for example, 9ff is a local ring and every operator in 

has its spectrum reduced to one point. 
We should like to point out that in the present nonclassical setting the 

powerful tool of spectral decomposition is missing. Nevertheless, our 
algebra ~ '  contains a countable family of quite simple operators from 
which all others can be obtained by limiting processes. Such representations 
can be used to interrelate algebraic and topological properties in our 
algebras ~r and J~g. 

The paper is expository and proofs will be omitted. For details we 
refer to Gross and K/inzi (1985) and Keller and Ochsenius (n.d.). 

2. CONSTRUCTION OF A NONCLASSICAL ORTHOMODULAR 
SPACE 

We always let No.'= {0, 1, 2 . . . .  }. 

2.1. The Base Field 

We construct recursively fields F n (n e No) by 

�9 Fo.-= N ( =  the field of real numbers) 
�9 Fn + i'=Fn(Xn + 1) = the field of all rational functions in the variable 

X ' n +  1 over F n 

Thus in each step a new transcendental element is adjoined. We order 
F, +i by powers of X~ +1- That means a polynomial 

p(Xn+l)=O~o+o~mXn+l+"'+O~sXS+l (0~0, ~x I . . . . .  C<sEFn;O~s#=O) 

is positive in F ,  + t if and only if as > 0 in F,. The union F~ .'= ~)~o= o F~ is 
naturally an ordered field. Finally we pass to the completion K.'= ff~ in the 
order topology. 

Observe that if e e F ,  = N ( X I ,  )(2 . . . . .  X , )  then 

m ' c t < X . + l  for all m e n  



4 Keller and Oclmenius 

We say that 0t is infinitely small with respect to Xn+l and we write 
<< Xn + 1. Thus K is a non-Archimedeanly ordered, complete field in which 

l = : X o < < X l < < X 2 < <  "" . < < X ~  < < .  �9 �9 

2.2. The Space 

The set 

V"={ (~t)i~N~176 series i=o ~ r c~ in the ~ t~176176  

is a vector space over K under componentwise operations. We define a 
symmetric, bilinear form ~ on V by 

r y):= ~ r for x = (~i)iE[~O, y = (~/i);~N0 e V 
i = 0  

This completes the construction of  the quadratic space (V, ~). 

2.3. Basic Properties of (tl, ~ )  

The most important property is" 

Theorem 1. (V, ~P) is an orthomodular space. 

Next we observe that the form ~ is positive-definite. Therefore the 
assignment 

x Ilxll,=t <x, (=  the real closure of  K) 

is a norm on the vector space V. The norm topology, defined by taking all 
sets {xeV] Ilxll (where >0) as a zero-neighborhood basis, 
turns V into a topological vector space. 

Theorem 2. (i) V is complete in the norm topology, i.e., a Banach 
space. 

(ii) A linear subspace U of V is closed in the norm topology if and 
only if it is orthogonally closed. 

Theorems 2 and 3 stress the close analogy to classical Hilbert spaces. 
However, there are some striking differences of  geometric nature, as is 
illustrated by the following result. 

Theorem 3. (i) If  two vectors x, y ~ V are orthogonal, x _1_ y, then one 
of  the lengths Ilxl[, IlYll is infinitely small with respect to the other. 

(ii) V cannot be isometric to a proper subspace. 
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2.3. The Standard Basis 

For  every ieM0 we let 

e i ' - = ( 0 , . . .  , 0 , 0 ,  1, 0 , . . . ) e V  

be the vector that has 1 in place i + 1 and 0 in all other places. Then ei L ej 
for i # j  and {eiliE No} is an orthogonal continuous base, which means that 
every vector x ~ V can be expressed as 

x = r = lim iei 
i=o n~oo i 

However, notice that in view of  Theorem 3(i), the base cannot be normal- 
ized. 

Remark. The above construction can easily be formulated in terms of  
valuations and can be varied in many ways. For  example, we might modify 
the definition of  the form r in such a way that the standard base contains, 
for every i~t~o, finitely many vectors of  square norm Xi (but never 
infinitely many). Or, we might begin with the function field 
Fo~ = • ( X l , . . . ,  Xn . . . .  ) as before, then endow F~ with the valuation v 
corresponding to the ordering, and then take as ground field the maximal 
completion of  (Foo, v) which is a Henselian field of  generalized power series. 
We do not enter into details. 

3. BOUNDED LINEAR OPERATORS 

A linear operator B: V ~  V is bounded if the set 

[[B(x) [[ 0 # x ~ V } c g ,  
ix 

has an upper bound in / ( .  Under the usual addition and composition the 
bounded linear operators on V form an algebra ~(V) .  

Remark 1. A bounded operator B is certainly continuous in the norm 
topology but, as shown in F~issler-Ullmann (1983), continuous operators 
need not be bounded. 

Remark 2. In general, a bounded linear operator cannot be assigned a 
norm in the usual way because norms are in the field g where a bounded 
subset may fail to have a supremum. Nevertheless, there is a natural norm 
topology on the algebra ~ ( V )  defined by taking the sets 

~//~ := { B ~ ( V ) [ ~  is a bound for B} (~ ~/~, 8 > 0) 

as a zero-neighborhood basis. It is readily verified that ~ (V )  is complete in 
this norm topology. 
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4. T H E  O P E R A T O R  A 

A bounded linear operator B: V ~ V is determined by the images B(e~) 
of the vectors e~ of the standard basis, hence B can be represented by a 
countably infinite matrix. 

Let 

u . -  �9 ei~ V 
i = o X i i  

and consider the operator A: V ~ V defined by 

The matrix of A with respect to the standard basis {eilisNo} is 

1 1 1 1 . .  
1 1 1 

1 . . . . .  
X1 XI 

1 1 1 . . . .  

X2 X2 X2 
1 1 1 

, .  o 

X 3  X 3  X 3  

The operator A is self-adjoint, O(A(x), y) = ~(x, A(y)) for all x, y~  V. 
We first look at the spectrum of  A,  which is defined as usual by 

spec(A) := {2 ~K[(A - 2 1 )  has no inverse in the algebra ~(V)} 

where I is the identity operator. 

Theorem 4. spec(A) = { 1 }. 

The obvious question is now whether the single point 1 in the 
spectrum is an eigenvalue of the self-adjoint operator A. The answer is 
given by the following result: 

Theorem 5. The operator A has no eigenvectors at all. 

Remark .  The fact that A fails to have eigenvalues is not particu- 
larly surprising. For, finding eigenvalues of  an operator amounts to 
solving certain infinitary equations over the base field. The point is that 
since our field K is far from being algebraically closed, its arithmetic 
structure is most rigid and intricate. 



Nonclassical Orthomodular Spaces 7 

A much  stronger result than Theorem 5 can be proved,  namely: 

Theorem 6. The opera tor  A admits no nontrivial  closed invariant  
subspace. In other  words, A does not  commute  with any nontrivial  
o r thogonal  projection. 

Theorems 5 and 6 put  into evidence that  there is little hope for a 
meaningful  spectral theory.  The tool of  spectral decomposit ion,  so 
powerful  in Hilbert  space theory,  seems to fade out  in the present 
nonclassical f ramework.  

An easy consequence o f  Theorem 6 is the following rather  peculiar 
result. 

Theorem 7. Every vector x 4:0 is a topologically cyclic vector 
for  the opera tor  A, that  is, the linear subspace spanned by x, A(x),  
A 2(x) . . . .  , Am(x), . . . ,  is topologically dense in V. 

5. THE ALGEBRA ~r 

We consider the commutator  algebra 

o A = A o 8 }  _= 

This is an operator algebra of  von Neumann type in the sense that (i) d 
is closed under taking adjoints, (ii) d coincides with its double centralizer 
d " .  It follows from Theorem 6 and d does not contain any nontrivial 
projection. 

From Theorem 7 we easily deduce: 

Lemma 8. Let 0 r x e V. Then every operator B in d is completely 
determined by the image vector B(x), that is, 

for allB, C ~ d :  B ( x ) = C ( x )  ~ B = C  

This lemma suggests we try to describe the operators in d by their 
action on some fixed nonzero vector x. To simplify computations, it is 
convenient to take x = e0. Thus we introduce the linear injection 

tp: d -~ V defined by B ~ ~(B)  .'= B(eo) 

We first determine the image W.'= Im(W). Recall that V consists of  all 
oo 2 vectors x = ~ ;~0  ~iei subject to the condition that ~ i=0 ~iX~ converges. 

Since K is non-Archimedean and complete, the series converges if and only 
if ~2X i ~ 0  for i --* oe. Write ~ = 2i/X~; then the elements of  V are precisely 
the vectors x = ~F=0 (2;/X~)ei for which 2~/X,. --,0 when i ~ oo. Observe 
that since X i ~ 0% that condition does surely not impose a bound on the 
numerators 2;. 
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Lemma 9. The image W of ~P consists of all vectors x = ~T= o (2i/Xi)ei 
V for which the set {[2,] [i = 0, 1, 2 . . . .  } c K is bounded. 

Remark. We observed previously that there is no meaningful spectral 
theory at disposition. But we may ask whether it is possible to retain a 
basic idea of  spectral decompositions, namely the idea of building up 
complicated operators from simpler ones. The above two Lemmas 8 and 9 
seem to be promising for that purpose. Indeed, under the correspondence 

a typical operator B e ~ '  is described by the vector w = B(eo)~ IV, which 
is in general an infinite linear combination, w = ~ = o  co~e, = limn_.o~ Wn, 
where w~ :=~7=o oJiei. Since all the base vectors eg are all in W (by Lemma 
9), we may first define C;. '=~-I(e~) and then, for all n~No, B~.'= 
~7=0co~Ci. Clearly ~(Bn)=~7=0ogiei  =wn and the situation can be 
pictured as follows: 

n o r m  t o p o l o g y  on  V 
W n =-- (.Die i ~ w 

i = 0  

B~= ~ ~oiC i . . . . . . . . . . . . .  . B 
i = O  

We expect that the operators B, converge to B in some sense, thereby 
completing the diagram. In fact, they do so, as we shall prove in Theorem 
11 below. Consequently an arbitrary operator B in ~r can be represented as 
an infinite sum B=~.T=o~o~Ci. The crucial point is to find the right 
topology. 

We first show that the operators C~ corresponding to the base vectors 
e i can be explicitly computed. 

Theorem 10. For ieN0 put pi.'= 1 - 1/Xi and let 

C i : =  I "}- P i  ( A  - p i  I )  - 1 

where I is the identity. Then C~(eo) =e; ,  that is, C~ = W-l(e,-). 

Remark. The inverse (A - -p i I ) -1  exists because pi~spec(A) = {1}. In 
fact it is not hard to compute the matrix of {A -- p~I) - 1 and hence also of  
c,. 

Theorem 11. Let Be~r and write B(eo ) = w =~T=0ogie;. Then the 
operators B,:=~7=ooggCiE~r converge to B in the topology of pointwise 
convergence. Hence B can be represented as 

c) B = lim co i ~--- o)iC i. 
n ~ o r ~  i i = O  
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Clearly d is closed in the algebra ~(V)  with respect to the topology 
of pointwise convergence, so we deduce: 

Corollary 12. Let c~ be the subalgebra of ~(V)  generated algebraically 
by {C~ I i~ ~o}. Then d equals the closure of c~ with respect to the topology 
of pointwise convergence. 

From their definition it is evident that the operators Ci commute with 
each other, so we have the following rather unexpected result. 

Corollary 13. The algebra ~r is commutative. 

6. THE SUBALGEBRA .Y~ 

In the above section we have seen that d is a commutative algebra 
without divisors of  zero, i.e., an integral domain. It is natural to study d 
along the lines of well-established concepts of commutative algebra. In 
other words, one should examine questions such as the existence of prime 
elements, unique factorization, prime ideals, maximal ideals, and so on. 
When attacking such problems we realized that the algebra ~r is extremely 
complicated as ring-theoretic aspects are concerned. The reason is that d 
contains a huge variety of operators of utmost dissimilar characteristics. 
However, we then discovered that by imposing an analytic condition it is 
possible to single out a subalgebra ~ which exhibits nice algebraic features 
and which contains all operators that are important in applications. 

The definition of ~ relies on the correspondence ~F: d ~ W. 

Definition. Let 

} U:= w = ~ "" eis W the sequence (2i)i~No is convergent 
,=0x, I 

�9 -= {B ~ d  IB(eo) ~ U} 

It is obvious that U is a linear subspace of IV, so ~ is closed under 
sums and scalar multiples. A somewhat lengthy computation establishes 
that ~ is also closed under products, hence ~ is a subalgebra. It is easily 
checked that the operators A, I, and all Ci belong to ~ .  

For the operators in ~ there is an efficient criterion on invertibility. 
We first mention that if B ~  has an inverse in ~r then this inverse is in 
~ .  Thus invertibility in ~r is the same as invertibility in ~ .  Now consider 
any B~J~' and write B(eo) = ~ = o  (2i/Xi)ei. Here the sequence (21)~N0 is 
convergent, so we can attach to B the quantities 

2B .'= lim 2i and 6B := ~ (2 --2 i ) 
i ~  i = 0  
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We then have: 

Theorem I4. The operator B~3cg is invertible if and only if 2s # 6s. 

Corollary 15. Let Be3Cg and let D .-=B - /~  �9 I for some #~K. Then D 
is noninvertible if and only if # = 2s - 6B. 

Corollary 16. Every operator in 3r has a one-point spectrum. 

The spectrum of A is { 1 }, so A - I is not invertible and the same holds 
for all elements in ( A -  I )W,  the principal ideal generated by A -  L It 
turns out that A - I  can be considered as a prototype of noninvertibles in 
oug. 

Theorem 17. An operator B~Yf is noninvertible if and only if it 
belongs to d t  .-= (A -- I)3r the closure of (A - I )W in the norm topology 
on ~(V).  Hence 3r is a local ring and .~g is its unique maximal ideal. 

To conclude, we remark that the subalgebra W can be characterized 
differently. The way 9f ~ was introduced above is highly efficient for tech- 
niques of proofs, but is unsatisfactory inasmuch as it depends on the 
continuous basis {ei} and on the choice of the referential vector e0 in the 
representation W: d ~ W. One can establish the following: 

Theorem 18. Let cg, be the subalgebra of ~ generated by {A}u 
{C;lie[~o}. Then ~(f equals the closure of ~g' in the norm topology on 
~(v). 

This result nicely fits into the leading ideas of the present investigation, 
which might be summarized as follows. In our nonclassical framework the 
base field is not algebraically closed. As a consequence, the significance of 
spectra is strongly diminished, since it is no longer possible to reconstruct 
a (self-adjoint) operator from its spectral family of orthogonal projections. 
We believe that there are other ways of representing operators by suitable 
families of "elementary" operators and that such representations provide 
insight into essential features of the operator algebras under consideration. 
For our algebras d and Jg this is indeed the case. The elementary 
operators C~ have first been introduced by means of the correspondence 
as the matches of the base vectors el. We then showed that they can be 
defined independently and computed by Ci = I +  p ~ ( A -  piI)  -~. Here 
p~ = 1 - 1/X~, so the sequence (Pg)i~N0 tends to 1, i.e., to the single point in 
the spectrum of A. The family {Ci lie t~0} contains basic information on the 
operator A and the von Neumann algebra ~r generated by {A }. In fact, in 
Section 5 we have seen that every operator B commuting with A can be 
obtained from the C,. by forming finite linear combinations and then taking 
limits in the topology of pointwise convergence. This representation entails 
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that  d is commutat ive .  Now it turns  out  that  taking limits in the n o r m  

topology yields the algebraically dist inguished subalgebra  3/f. 
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